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Automatic Generation of Starting Values for
the Simulation of Microwave Oscillators
by Frequency Domain Techniques

M. Fillebock, M. Schwab and P. Russer

Abstract—In this paper a new approach to the start-up problem
inherent to the large-signal analysis of autonomous circuits in the
frequency domain is presented. By insertion of a simple network,
depending on one parameter, the oscillator is damped to the
stability limit where a linear analysis yields good results. The
steady state of the undamped oscillator is then obtained by a
continuation method corresponding to the successive removal
of the damping network. With this procedure the degenerate
solution may be excluded in a straightforward manner.

1. INTRODUCTION

The rapid progress in modern MMIC-technology makes
high demands on the accuracy of CAD design tools. Available
numerical methods for the large-signal analysis of microwave
oscillators are methods of the harmonic balance type [1,2] and
algorithms based on power series [3]. All these approaches
have in common that the problem of computing the steady
state is transformed into the problem of solving a system of
nonlinear algebraic system equations. For autonomous systems
the unknowns of these equations are typically the oscillating
or fundamental frequency and the Fourier coefficients of the
state variable waveforms. Common methods to solve the non-
linear algebraic system equations are the Newton algorithm,
relaxation methods and minimization of an objective function
[1]. In any case these iterative algorithms require a set of
starting values for the unknowns lying within the region of
convergence of the solving algorithm.

Microwave oscillators are generally designed with high-
Q resonant circuits causing poor convergence properties or
even no convergence if the fundamental frequency is not
predicted accurately. An initial estimate for the frequency
of oscillation is usually obtained by linear analysis [4,2]
or by trial and error methods [5]. The large-signal analysis
of autonomous systems performed with starting values not
sufficiently close to the time-periodic solution will yield the
degenerate solution or will not converge if modifications to
exclude the degenerate solution were made. Rizzoli et al.
proposed a straightforward approach to free-running oscillator
analysis based on the harmonic balance algorithm coupled
with a mixed-mode Newton iteration where the fundamental
frequency is included as an optimization variable [1,2]. The
harmonic-balance system equations were modified in order
to exclude the bias point as a solution. Furthermore a finite
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output power of a significant harmonic is used to perform a
preliminary iteration to start up the final iteration [1,2]. Chang
et al. incorporated the Kurokawa oscillation condition in the
system equations to avoid the degenerate solution [5].

The approach in this paper is not based on the, not generally
valid, approximation of the steady state solution of the actual
oscillator but on the exact solution of the oscillator damped
to the stability limit. The steady state solution of the actual
oscillator is then obtained by a continuation method. The
algorithm can be incorporated in any large-signal analysis
program and performed automatically before the iteration
process is started.

II. CONTINUATION METHODS

The description of various physical problems can be reduced
to a set of nonlinear system equations of the form E(x) =
0. Since in general an analytical solution is not available,
the solution is obtained numerically by iteration algorithms
requiring a set of starting values sufficiently close to the
solution. An estimation of starting values turns out to be a
serious task.

The basic idea of continuation methods is to substitute a
problem E(x) = 0, which cannot be solved directly, by a
problem

F(x,n) =0, 1)

where 77 is an independent continuation parameter and
F(x,n = 0) = E(x). F(x,n) is chosen in a way that a
solution (x¢;7n0) of F is known or can be estimated easily.
Starting from this first solution (xg;70), the continuation
problem is to calculate further solutions (X1;m1),(X2;n2)...
until one reaches the target point at » = 0. This way the
modified problem F(x,7) = 0 is transferred step by step into
the original problem E(x) = 0.

The parameterization of the original problem establishes an
embedding which is called artificial for arbitrary choices of
the continuation parameter 7. Within a natural embedding 7
can be associated with a physical parameter. The advantage of
the latter is that the computed solution branch F(x,n) = 0;
10 = 1 > 0 is of physical interest in many cases.

III. THE SYSTEM EQUATIONS

Piecewise harmonic balance approaches and the FATE al-
gorithm [6] are based on the network representation shown
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Fig. 2. Separation of the linear and nonlinear network parts.

in figure 1. The oscillator network is divided into two stable
subnetworks. The nonlinear subnetwork is described in the
time domain by the state equations, the linear subnetwork is
described in the frequency domain.

Both subnetworks are connected at M ports. In a subsequent
step M linear independent port voltages and currents are
substituted by voltage and current sources and the oscillator
network is divided up into two parts, see figure 2. We describe
the voltage and current sources by the vector s = (v, c)”. The
system responses to the sources at the ports are represented by
the vector r = (¢, v,)T in the nonlinear subnetwork and by
v’ in the linear subnetwork respectively.

In harmonic balance approaches Kirchhoff’s laws are for-
mulated in the frequency domain at the common ports of the
subnetworks leading to system equations in terms of vanishing
harmonic balance errors. In steady state, all Fourier coefficients
of r and r’, which are described by truncated Fourier series,
coincide. The circuit state is completely described by the
vector of Fourier coefficients S of the vector s and the
fundamental frequency of oscillation. The free phase of the
limit cycle may be fixed by setting the phase at one port to
an arbitrary but fixed value, e.g. by setting the imaginary part
of the Fourier coefficient of the fundamental at the first port
5‘%’" to zero. By introducing the fundamental frequency wg as
a state variable. the number of unknowns equals the number
of system equations.

The system equations are given by

E(S,(A}O) = 0’ (2)

where E is a nonlinear function and S represents the Fourier
coefficients of the sources at the M ports.

The formulation of Kirchhoff’s laws in the time domain,
as it is performed in the FATE-algorithm, leads also to sys-
tem equations of the above form, which can be solved by
algorithms of the Newton-Raphson type [6].

To start the iteration, a set of M (2K +1) — 1 starting values
for the Fourier coefficients of the sources and an accurate
estimate for the fundamental frequency wq is needed, where
M is the number of interconnecting ports and K the number
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Fig. 3. Linear and damping subnetwork.

of relevant harmonics. In the following we will show how
to overcome the problem of generating starting values by a
continuation method with natural embedding.

IV. THE MODIFIED NETWORK

In a strongly damped oscillator network sufficiently close
to the primary Hopf bifurcation point, all signal amplitudes
in steady state are small. Therefore, linearizing the network
in this point and considering only the fundamental frequency
component leads to an accurate approximation of the steady
state solution.

The basic idea of modifying the oscillator network is to
find some parameter, transferring the oscillator into a network
close to the primary Hopf bifurcation point, where a linear
small-signal approximation yields accurate results.

In this section we will discuss the choice of this parameter,
the estimation of the fundamental frequency and the amplitude
and phase relations of the Fourier coefficients of the sources
at the network ports. By using this approximation as an initial
value for the large-signal analysis, the steady state solution for
the damped oscillator is determined and this way a starting
point for the continuation is given.

A. Establishment of a Natural Embedding

There exist various ways to transfer the original oscillator
network into a network at the stability limit, e.g. reducing the
bias voltage. In the outlined method, a damping network which
is dependent on a damping parameter 7, is inserted between
the two network parts, see figure 3. Since we presumed
stability of each network part, no periodic solution can exist
for  — oo. If there exists a periodic solution for the original
oscillator network, i.e. n = 0, there is a critical parameter
1o > 0, for which the steady state solution of the parameterized
network changes stability. How the frequency of the onsetting
oscillation and the amplitude and phase relations of the Fourier
coefficients of the fundamental frequency component can be
estimated in this bifurcation point, is the task of the next
subsection.

B. The Damped Oscillator Network

The nonlinear subnetwork is described in the time domain
by its state equations:

d:
-d—’f =f(x,s) xeRV,seRM 3)
r=g(x,s) xe RY se RM rec RM, 4)

where x is the vector of state variables and f, g are multidi-
mensional nonlinear functions. The vectors s and r describe
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the sources at the ports and the system responses of the
nonlinear subnetwork caused by these sources.

The state equations are linearized around the bias point
f(x0,80 = 0) = 0, leading to

d(Ax) of(x,s) of(x,s)
d T ox [ AXT T e AS O
Ar = _ag(x, s) zo.50 AX+ ___3g(x, s) zo.50  AS. (6)°
ox ’ Js ’

Ax, As and Ar are the AC components of x,s and r . If
we denote X, S and R as the Laplace transforms of Ax, As
and Ar, the system equations in the frequency domain are
given by

. Of(x,s) of(x,s
X= 9% Z0,30 X+ % Zo,%0 S @)
_ 9g(x;s) dg(x,s)
R — ax 0,80 X + 65 xp,80 Sa (8)

where p = o 4 jw is a complex frequency.
In the linearized system, the inner circuit states X can be
eliminated and the behaviour of the subnetwork is described by

R=Hnp S HpyLeCM*¥ g RecM )

dg(x,s) of(x,s) -
HNL ZT 0,80 D I- 3—){ X0,50
of(x,s) 9g(x,s)
X BS Zo,80 BS 0,80 (10)

I € RN denotes the Identity matrix.

As the source vector may contain voltages and currents, Hnr,
is a hybrid matrix. If S contains voltages or currents only,
Hn1, degenerates to an impedance or an admittance matrix.
The linear subnetwork may also be described by a hybrid
matrix representation.

R =Hp S Hp, € RM*M 1)

In order to damp the oscillator network, resistors depending
on the damping parameter 7 are inserted in series to the
current sources and parallel to the voltage sources of the linear
subnetwork. For this choice of a damping network (figure 3)
the matrix representation for the extended linear subnetwork
is given by

Hyp =Hy +diag[ﬁ*RD/R(2)a"'JI*RD/Raa
My

n*Rp,---,n*xRp|. (12)

Mo
Rp and Ry are constant, My and M are the numbers of
voltage and current sources at the networkports. The damping
parameter is denoted by 7. The required equality of the port
variables leads to

[HNL(p) + Hrp(p, n)] S=H S=0. (3

811

A possible way for a starting value estimation is to compute
the eigenvalues of the linearized system which are determined
by
det [H(n,p)] =0. (14)
The eigenvector S; related to the complex conjugate pair
of eigenvalues p; = o; £ yw; with o; > 0 yields a good
approximation for the frequency w; of the onsetting oscillation
and for the amplitude and phase relations of S [7]. Obviously,
for this computation Hp,(p) has to be given analytically.
However, for distributed elements the Hy,-matrix is available
only along the imaginary axis, i.e. Hy,(p) is given for p = jw.
In the primary Hopf bifurcation point, i.e. n = g, the
transients of the onsetting oscillation vanish, that means one
pair of eigenvalues meets p = tjw. All other oscillations are
dying out as they are related to eigenvalues with a negative real
part and are therefore neglected. Only the pair of eigenvalues
with o = 0 is of interest and can be computed via

det[H(n,p = jw)] =0.

These are two encoupled equations in terms of  and w. The
solution of (15) yields wy and 7y. Note that H, has only to be
given for frequencies p = jw. The corresponding eigenvector,
i.e. the amplitude and phase relations of the fundamental
frequency component of the port variables are given by (13).
Due to the rank defect of the matrix H{ng,p = jwp), one
complex port variable has to be set in order to approximate
a steady state solution of the damped network. By setting the
imaginary part of the Fouriercoefficient at the first port Si™
1o zero the phase of the limit cycle is fixed. A strategy how to
set the real part of the Fouriercoefficient at the first port ST°
is presented in the next subsection.

(15)

C. Steady State Estimation

It has been observed that large-signal analysis algorithms for
autonomous systems tend to calculate the degenerate solution.
The method of inserting a damping network presented here
enables a straightforward solution of this problem. Note that
with the insertion of a damping network a solution branch
S(n),w(n) is established, depending on the damping parameter
n. This branch describes an oscillatory solution for 0 < 7 < 7o
and is determined by the extended system equations

E(S(n),w(n),n) = 0.

Usually, the branch is computed by varying 7 and computing
the corresponding S(7), w(n). To avoid the problem discussed
above, one Fourier coefficient of the fyndamental is set to an
arbitrary but fixed value, say S7¢ = S5* and 7 is introduced
as an optimization variable instead. Starting values for the
large-signal analysis are then obtained by calculating the
remaining Fourier coefficients of the fundamental via (13) and
setting w to wy. Note, that no preassumption has been made
except that S’ft is lying on the solution branch defined above.
The latter assumption, however, holds in any case if S{t is
chosen sufficiently small. The solution of the modified large-
signal analysis program described above, is an n = 7y with

(16)
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Fig. 4. Varactor tunable GaAs VCO; - - - mark the nonlinear network part.

0 < g < mg for which the network has a time-periodic
solution with S7¢ = S5,

Starting from the solution of the modified problem with
11 = 7)st, the solution of the original problem is found by
continuation of the solution branch from 7 = 7, to 7 = 0. By
applying the presented method to an example, details such as
the appropriate choice of §ft will be discussed.

V. EXAMPLE

To demonstrate the feasability of the presented method,
starting values for a varactor tunable oscillator were generated
according to the strategy described above. The large-signal
analysis was performed by the FATE algorithm. The nonlinear
and the linear subnetwork have M = 3 common ports (figure
4) and the port voltages were substituted by voltage sources.
The oscillator was analysed for a varactor tuning voltage of
—2V. The models for the nonlinear elements were chosen
according to [8] and the linear subnetwork was represented by
its admittance matrix in the frequency domain.

After linearization of the nonlinear subnetwork in the bias
point, the critical frequency arid the critical continuation pa-
rameter in the primary Hopf bifurcation point were determined
to

fo=13.7142GHz np = 0.364797 (Rp/R3 = 0.001S).

This means that a time-periodic solution exists for 0 < 7 <
1. In figure 5 the solution path of the frequency of oscillation
and the Fouriercoefficient of the port voltage fundamental at
the first port, connecting the bifurcation point and the solution
of the original problem, is depicted. The task of generating
starting values is to estimate any solution lying sufficiently
close to the solution path established by varying # from 7, to
7 = 0. With f; an estimation for the frequency of oscillation
is given. A linear small-signal analysis yields the relation
between the Fouriercoefficients of the fundamental at all ports.
The estimated Fouriercoefficients df the fundamental at the
second and third port may therefore be regarded as linear
functions of the Fouriercoefficient at the first port S7° (figure
6). By setting SJ° to an arbitrary but fixed value S’ft, all
Fouriercoefficients of the fundamental are determined and the
large-signal analysis may be started.
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Fig. 5. Solution path of the frequency of oscillation and the Fourier coeffi-
cient of the fundamental first port.
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Fig. 6. Estimated and exact values of the Fourier coefficients of the funda-
mental at the second and third port.

In figure 6 the estimated Fouriercoefficients of the funda-
mental and the coefficients resulting from the nonlinear large-
signal analysis are depicted dependant on g’ft In the case of
relatively small amplitudes gft, the small signal approximation
is excellent and the large-signal analysis algorithm converges
after one iteration step. For larger choices of 5‘1‘”’, exact and
estimated solution do not coincide anymore as the exact
solution contains higher harmonics. The FATE algorithm needs
more iteration steps, but still converges as the degenerate
solution is avoided by setting the Fouriercoefficient of the
fundamental at the first port to the fixed value 5’{6 = S’f". In
this case the solution of the iteration is closer to the solution
of the undamped oscillator reducing the computational effort
for the continuation back to the original problem. Table 1 lists
the Fouriercoefficient gft determining the amplitude level of
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the starting values and the solution, the damping parameter n
related to the solution with S’{e = S'ft and the number n of
iteration steps required to achieve convergence. In any case the
deviation of the estimated frequency from the exact solution
was less than 2.6%. This value must be regarded with respect
to the Q-factor of the resonator, lying in the region of ¢ ~ 30.
Note that the large-signal analysis converged for any choice
of S* lying on the solution path established by the damping
parameter and for small amplitudes S'ft estimated and exact
solution almost coincide.

V1. CONCLUSION

A new algorithm to overcome the start-up problem arising
in the analysis of free-running oscillators was presented.
By introducing a new network parameter the calculation of
the degenerate solution is avoided without any restrictive
assumptions concerning the network topology. The algorithm
may be coupled with standard large-signal analysis programs
such as the piecewise harmonic-balance algorithm and be
performed automatically before the actual analysis is started.
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