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Abstract4n this paper a new approach to the start-up problem

inherent to the large-signal analysis of autonomous circuits in the
frequency domain is presented. By insertion of a simple network,

depending on one parameter, the oscillator is damped to the
stability limit where a linear analysis yields good results. The

steady state of the undamped oscillator is then obtained by a

continuation method corresponding to the successive removal

of the damping network. IWth this procedure the degenerate

solution may be excluded in a straightforward manner.

I. INTRODUCTION

The rapid progress in modem MMIC-technology makes

high demands on the accuracy of CAD design tools. Available

numerical methods for the large-signal analysis of microwave

oscillators are methods of the harmonic balance type [1,2] and

algorithms based on power series [3]. All these approaches

have in common that the problem of computing the steady

state is transformed into the problem of solving a system of

nonlinear algebraic system equations. For autonomous systems

the unknowns of these equations are typically the oscillating

or fundamental frequency and the Fourier coefficients of the

state variable waveforms. Common methods to solve the non-

linear algebraic system equations are the Newton algorithm,

relaxation methods and minimization of an objective function

[1]. In any case these iterative algorithms require a set of

starting values for the unknowns lying within the region of

convergence of the solving algorithm.

Microwave oscillators are generally designed with high-

Q resonant circuits causing poor convergence properties or

even no convergence if the fundamental frequency is not

predicted accurately. An initial estimate for the frequency

of oscillation is usually obtained by linear analysis [4,2]

or by trial and error methods [5]. The large-signal analysis

of autonomous systems performed with starting values not

sufficiently close to the time-periodic solution will yield the

degenerate solution or will not converge if modifications to

exclude the degenerate solution were made. Rizzoli et al.

proposed a straightforward approach to free-running oscillator

analysis based on the harmonic balance algorithm coupled

with a mixed-mode Newton iteration where the fundamental

frequency is included as an optimization variable [1,2]. The

harmonic-balance system equations were modified in order

to exclude the bias point as a sohdion. Furthermore a finite
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output power of a significant harmonic is used to perform a

preliminary iteration to startup the final iteration [1,2]. Chang

et al. incorporated the Kurokawa oscillation condition in the

system equations to avoid the degenerate solution [5].

The approach in this paper is not based on the, not gen&ally

valid, approximation of the steady state solution of the actual

oscillator but on the exact solution of the oscillator damped

to the stability limit. The steady state solution of the actual

oscillator is then obtained by a continuation method. The

algorithm can be incorporated in any large-signal analysis

program and performed automatically before the iteration

process is started.

II. CONT~UATION METHODS

The description of various physical problems can be reduced

to a set of nonlinear system equations of the form E(x) =

O. Since in general an analytical solution is not available,

the solution is obtained numerically by iteration algorithms

requiring a set of starting values sufficiently close to the

solution. An estimation of starting values turns out to be a

serious task.

The basic idea of continuation methods is to substitute a

problem E(x) = O, which cannot be solved directly, by a

problem

F(x> q) = O, (1)

where q is an independent continuation parameter and

F(x, q = 0) = E(x). F(x, ~) is chosen in a way that a

solution (xo; qO) of F is known or can be estimated easily.

Starting from this first solution (xo; no), the continuation

problem is to calculate further solutions (xl; TIl ), (XZ; v2) . . .

until one reaches the target point at q = 0, This way the

modified problem F (x, q) = O is transferred step by step into

the original problem E(x) = O.

The parameterization of the original problem establishes an

embedding which is called artificial for arbi&@ choices of

the continuation parameter q. Within a natural embedding q

can be associated with a physical parameter. The advantage of

the latter is that the computed solution branch F(x, q) = O;
q. ~ q > 0 is of physical interest in many cases.

III. THE SYSTEM EQUATIONS

Piecewise harmonic balance approaches and the FATE al-

gorithm [6] are based on the network representation shown
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Fig. 2. Separation of tbe linear and nonlinear network parts.

in figure 1. The oscillator network is divided into two stable

subnetworks. The nonlinear subnetwork is described in the

time domain by the state equations, the linear subnetwork is

described in the frequency domain.

Both subnetworks are connected at M ports. In a subsequent

step M linear independent port voltages and currents are

substituted by voltage and current sources and the oscillator

network is divided up into two parts, see figure 2. We describe

the voltage and current sources by the vectors = (v, C)T. The

system responses to the sources at the ports are represented by

the vector r = (c,, v,) T in the nonlinear subnetwork and by

r’ in the linear subnetwork respectively.

In harmonic balance approaches KirchhofPs laws are for-

mulated in the frequency domain at the common ports of the

subnetworks leading to system equations in terms of vanishing

harmonic balance errors. In steady state, all Fourier coefficients

of r and rl, which are described by truncated Fourier series,

coincide. The circuit state is completely described by the

vector of Fourier coefficients S of the vector s and the

fundamental frequency of oscillation. The free phase of the

limit cycle may be fixed by setting the phase at one port to

an arbitrary but fixed value, e.g. by setting the imaginary part

of the Fourier coefficient of the fundamental at the first port

@lm to zero. By introducing the fundamental frequency wo as

a state variable. the number of unknowns equals the number

of system equations.

The system equations are given by

E(S, WO) = O, (2)

where E is a nonlinear function and S represents the Fourier

coefficients of the sources at the M ports.

The formulation of Kirchhoffs laws in the time domain,

as it is performed in the FATE-algorithm, leads also to sys-

tem equations of the above form, which can be solved by

algorithms of the Newton-Raphson type [6].

To start the iteration, a set of M(2K + 1) – 1 starting values

for the Fourier coefficients of the sources and an accurate

estimate for the fundamental frequency W. is needed, where

M is the number of interconnecting ports and K the number
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Fig. 3. Linear and damping subnetwork.

of relevant harmonics. In the following we will show how

to overcome the problem of generating starting values by a

continuation method with natural embedding.

IV. THE MODIFIED NETWORK

In a strongly damped oscillator network sufficiently close

to the primary Hopf bifurcation point. all signal amplitudes

in steady state are small. Therefore, linearizing the network

in this point and considering only the fundamental frequency

component leads to an accurate approximation of the steady

state solution.

The basic idea of modifying the oscillator network is to

find some parameter, transferring the oscillator into a network

close to the primary Hopf bifurcation point, where a linear

small-signal approximation yields accurate results.

In this section we will discuss the choice of this parameter,

the estimation of the fundamental frequency and the amplitude

and phase relations of the Fourier coefficients of the sources

at the network ports. By using this approximation as an initial

value for the large-signal analysis, the steady state solution for

the damped oscillator is determined and this way a starting

point for the continuation is given.

A. Establishment of a Natural Embedding

There exist various ways to transfer the original oscillator

network into a network at the stability limit, e.g. reducing the

bias voltage. In the outlined method, a damping network which

is dependent on a damping parameter q, is inserted between

the two network parts, see figure 3. Since we presumed

stability of each network part, no periodic solution can exist

for q - co. If there exists a periodic solution for the original

oscillator network, i.e. q = O, there is a critical parameter

qO>0, for which the steady state solution of the pararneterized

network changes stability. How the frequency of the onsetting

oscillation and the amplitude and phase relations of the Fourier
coefficients of the fundamental frequency component can be

estimated in this bifurcation point, is the task of the next

subsection.

B. The Damped Oscillator Network

The nonlinear subnetwork is described in the time domain

by its state equations:

dx
– f(x, s)

x–
XER~, SeRM (3)

r = g(x, s) x~RN,scR~{,r~R~f, (4)

where x is the vector of state variables and f, g are multidi-

mensional nonlinear functions. The vectors s and r describe
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the sources at the ports and the system responses of the

nonlinear subnetwork caused by these sources.

The state equations are linearized around the bias point

f(xo, so = O) = O, leading to

d(Ax) _ af(x, s) af(x, s)
— ..,,O Ax+ ~

dt – 8X
~0,~0 As (5)

Ar = ag(x, s) ag(x, s)
..,sO Ax+ as

ax
~O,.O As. (6)

Ax, As and Ar are the AC components of x,s and r . If

we denote X, S and R as the Laplace transforms of Ax, As

and Ar, the system equations in the frequency domain are

given by

df(x, s) af(x, s)
p X=7 ..,,O x+ ~ Xo,s0 s (7)

~ = ag(x, s) dg(x, s)

ax
..,.O x + ~s zo,~oS, (8)

where p * a + jw is a complex frequency.

In the linearized system, the inner circuit states X can be

eliminated and the behaviour of the subnetwork is described by

R=HNL S HNL 6 CMXM, S,RG C7hf (9)

[ 1
–1

HNL = ag(x, s) af(x, s)

ax Zo ,s0 p 1–7 Xo >s0

af(x, s) + dg(x, s)
x—

as co ,s0
&

Zo ,s0 (lo)

I ~ RNdenotes the Identity matrix.

As the source vector may contain voltages and currents, HNL

is a hybrid matrix. If S contains voltages or currents only,

HNL degenerates to an impedance or an admittance matrix.

The linear subnetwork may also be described by a hybrid

matrix representation.

R’=HL S HL G RfiIXfi[ (11)

In order to damp the oscillator network, resistors depending

on the damping parameter q are inserted in series to the

current sources and parallel to the voltage sources of the linear

subnetwork. For this choice of a damping network (figure 3)

the matrix representation for the extended linear subnetwork

is given by

[HLD = HL + diag rl* RD/R~, ,.. ,~+ RD/R~l

MV

1q* RD, .-. ,q*RD . (12)
~]

MC

RD and R. are constant, Mv and Mc are the numbers of

voltage and current sources at the networkports. The damping

parameter is denoted by q. The required equality of the port

variables leads to

[HNL(P) + HLD(p, q)] S = H S = O. (13)

A possible way for a starting value estimation is to compute

the eigenvalues of the linearized system which are determined

by

[1det H(q, p) = O. (14)

The eigenvector Si related to the complex conjugate pair

of eigenvalues pi = Ci + Jwi with ~i > 0 yields a good

approximation for the frequency wi of the onsetting oscillation

and for the amplitude and phase relations of S [7]. Obviously,

for this computation HL (p) has to be given analytically.

However, for distributed elements the HL -matrix is available

only along the imaginary axis, i.e. H~ (p) is given for p = jw.
In the primary Hopf bifurcation point, i.e. ~ = no, the

transients of the onsetting oscillation vanish, that means one

pair of eigenvalues meets p = +jw. All other oscillations are

dying out as they are related to eigenvalues with a negative real

part and are therefore neglected. Only the pair of eigenvalues

with m = O is of interest and can be computed via

det [H(q, p = ~w)] = O. (15)

These are two encoupled equations in terms of q and w. The

solution of ( 15) yields W. and qo. Note that HL has only to be

given for frequencies p = ~w. The corresponding eigenvector,

i.e. the amplitude and phase relations of the fundamental

frequency component of the port variables are given by (13).

Due to the rank defect of the matrix H(vO, p = jwo ), one

complex port variable has to be set in order to approximate

a steady state solution of the damped network. By setting the

imaginary part of the Fouriercoefficient at the first port @ln

to zero the phase of the limit cycle is fixed. A strategy how to

set the real part of the Fouriercoefficient at the first port fie

is presented in the next subsection.

C. Steady State Estimation

It has been observed that kn-ge-signal analysis algorithms for

autonomous systems tend to calculate the degenerate solution.

The method of inserting a damping network presented here

enables a straightforward solution of this problem. Note that

with the insertion of a damping network a solution branch

S(q), w(q) is established, depending on the damping parameter

V. This branch describes an oscillatory solution for O s ~ < no

and is determined by the extended system equations

E(S(q), U(q), q) = O. (16)

Usually, the branch is computed by varying q and computing

the corresponding S(q), w(q). To avoid the problem discussed

above, one Fourier coefficient of the fundamental is set to an

arbitlary but fixed value, say fie = fit and rI is introduced

as an optimization variable instead. Starting values for the
large-signal analysis are then obtained by calculating the

remaining Fourier coefficients of the fundamental via (13) and

setting w to W.. Note, that no preassumption has been made

except that S~t is lying on the solution branch defined above.

The latter assumption, however, holds in any case if S~t is

chosen sufficiently small. The solution of the modified large-

signal analysis program described above, is an v = q,t with
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O 5 ~s~ < r10 for which the network has a time-periodic

solution with S:e = S~t.

Starting from the solution of the modified problem with

T = qst, the solution of the original problem is found by

continuation of the solution branch from q = ~,t to q = O. By

applying the presented method to an example, details such as

the appropriate choice of S~t will be discussed.

V. EXAMPLE

To demonstrate the feasibility of the presented method,

starting values for a varactor tunable oscillator were generated

according to the strategy described above. The large-signal

analysis was performed by the FATE algorithm. The nonlinear

and the linear subnetwork have M = 3 common ports (figure

4) and the port voltages were substituted by voltage sources.

The oscillator was analysed for a varactor tuning voltage of

– 2V. The models for the nonlinear elements were chosen

according to [8] and the linear stibnetwork was represented by

its admittance matrix in the frequency domain.

After linearization of the nonlinear subnetwork in the bias

point, the critical frequency atid the critical continuation pa-

rameter in the primary Hopf bifurcation point were determined

to

~0 = 13.7142 GHz VI) = 0.364797 (RD/R~ = 0.()()1 S).

This means that a time-periodic solution exists for O < q ~

q.. In figure 5 the solution path of the frequency of oscillation

and the Fouriercoefficient of the port voltage fundamental at

the first port, connecting the bifurcation point and the solution

of the original problem, is depicted. The task of generating

starting values is to estimate any solution lying sufficiently

close to the solution path established by varying q from q. to

T’ = 0. With j’o an estimation for the frequency of oscillation
is given. A linear small-signal analysis yields the relation

between the Founercoefficients of the fundamental at all ports.
The estimated Founercoefficients df the fundamental at the

second and third port may therefore be regarded as linear

functions of the Fouriercoefficient at the first port ~’ (figure

6). By setting i$’[’ to an arbitrary but fixed value S~t, all

Fouriercoefficients of the fundamental are determined and the

large-signal analysis may be started.
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Fig. 6. Estimated and exact values of the Fourier coefficients of the funda-
mental at the second and third port.

In figure 6 the estimated Fouriercoefficients of the funda-

mental and the coefficients resulting from the nonlinear large-

signal analysis are depicted dependant on ~~t. In the case of

relatively small amplitudes S~t, the small signal approximation

is excellent and the large-signal analysis algorithm converges

after one iteration step. For larger choices of S~t, exact and

estimated solution do not coincide anymore as the exact

solution contains higher harmonics. The FATE algorithm needs

more iteration steps, but still converges as the degenerate

solution is avoided by setting the Fouriercoefficient of the

fundamental at the first port to the fixed value fie = S~t. In

this case the solution of the iteration is closer to the solution

of the undamped oscillator reducing the computational effort

for the continuation back to the original problem. Table 1 lists

the Fouriercoefficient ~~t determining the amplitude level of
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the stzwting values and the so!ution, ~he damping parameter q

related to the solution with S~e = S~t and the number n of

iteration steps required to achieve convergence. In any case the

deviation of the estimated frequency from the exact solution

was less than 2.6%. This value must be regarded with respect

to the Q-factor of the resonator, lying in the region of Q N 30.

Note that the large-signal analysis converged for any choice

of S?t lying on the solution path established by the damping

parameter and for small amplitudes f?~t estimated and exact

solution almost coincide.

VI. CONCLUSION

A new algorithm to overcome the start-up problem arising

in the analysis of free-running oscillators was presented.

By introducing a new network parameter the calculation of

the degenerate solution is avoided without any restrictive

assumptions concerning the network topology. The algorithm

may be coupled with standard large-signal analysis programs

such as the piecewise harmonic-balance algorithm and be

performed automatically before the actual analysis is started.
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